Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus.

نویسندگان

  • D W Sretavan
  • C J Shatz
چکیده

The morphological changes in individual retinal ganglion cell axons associated with the formation of the eye-specific layers in the dorsal lateral geniculate nucleus (LGN) were studied during the prenatal development of the cat's visual system. Previous work has shown that the pattern of segregated eye inputs found in the adult arises from an immature state in which inputs from the two eyes are intermixed within the nucleus (Shatz, 1983). Here, this developmental process is examined at its fundamental unit of connectivity--the individual retinal ganglion cell axon. To do so, an in vitro method was used to label fetal cat optic tract axons with HRP at various times during development between embryonic day 38 (E38) and postnatal day 2 (P2) (gestation = 65 d). The results presented here are based on reconstructions of 172 axons. During the initial period of intermixing (E38-43), axons are relatively simple in morphology. Many axons studied at the earliest ages (E38) end in growth cones and have very few branches along the main axon trunk as they traverse the nucleus. By E43, the number of side branches given off along the main axon trunk has increased and most axons also have a simple terminal arbor. Over the next 2 weeks (E43-55), the majority of axons are studded with side branches and the terminal arbor is well defined. Then, between E55 and birth, axons lose their side branches and the eye-specific layers appear. By birth, nearly all axons have a smooth trunk and an elaborate terminal arbor restricted to the LGN layer appropriate to the eye of axon origin. When the number of side branches per axon was quantified, the time course of appearance and subsequent loss of side branches was found to parallel the time course of the initial intermixing of inputs and subsequent reduction in territory shared by the two eyes as determined from previous intraocular injection experiments. Our results also showed that the side branches along each axon were located primarily within LGN territory destined to be occupied by the other eye. Thus, the side branches are likely to represent a morphological substrate for the intermixing of inputs from the two eyes. These observations suggest that the segregation of eye input to the LGN involves two fundamental and simultaneous events. One event is the remodeling of the branching pattern along the length of the main axon trunk so that the side branches present early on are eliminated and the main axon trunk becomes smooth.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers.

Spontaneous retinal activity mediated by cholinergic transmission regulates the segregation of retinal ganglion cell axons in the lateral geniculate nucleus of the thalamus into eye-specific layers. The details of how the layers form are unknown. Mice lacking the beta2 subunit of the neuronal nicotinic acetylcholine receptor lack ACh-mediated waves and as a result, do not form eye-specific laye...

متن کامل

Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions.

During prenatal development of the cat's retinogeniculate projection, inputs from the ganglion cell axons of the two eyes are initially intermixed with each other within the lateral geniculate nucleus (LGN). As development proceeds, the inputs sort out to give rise to the eye-specific layers characteristic of the adult. During this sorting out process, individual axons undergo a stereotyped seq...

متن کامل

ERK signaling is required for eye-specific retino-geniculate segregation.

In the mammalian visual system, retinal ganglion cell (RGC) projections from each eye, initially intermixed within the dorsal-lateral geniculate nucleus (dLGN), become segregated during the early stages of development, occupying distinct eye-specific layers. Electrical activity has been suggested to play a role in this process; however, the cellular mechanisms underlying eye-specific segregatio...

متن کامل

The Journal of Comparatiit Neurology

The lateral geniculate nucleus of the ferret contains not only eye-specific layers, but a further subdivision of layers A and A1 into inner and outer sublaminae that contain, respectively, ON-center and OFF-center cells (Stryker and Zahs, '83). To study how the arbors of single retinal ganglion cell axons correlate with these cellular divisions, we have examined the morphology of physiologicall...

متن کامل

Intracellular recordings from binocularly activated cells in the cat's dorsal lateral geniculate nucleus.

Five binocularly activated cells near the interlaminar layers of the dorsal lateral geniculate nucleus have been studied with intracellular recording techniques. Four neurons were relay cells and antidromically activated from the visual cortex. They received monosynaptic excitation and disynaptic inhibition from Y type retinal ganglion cells in both eyes and disynaptic recurrent inhibition. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 1986